A High‐Entropy Layered Perovskite Coated with In Situ Exsolved Core‐Shell CuFe@FeOx Nanoparticles for Efficient CO2 Electrolysis

Author:

Wang Ziming1,Tan Ting1,Du Ke1,Zhang Qimeng1,Liu Meilin2ORCID,Yang Chenghao1ORCID

Affiliation:

1. Guangzhou Key Laboratory for Surface Chemistry of Energy Materials New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou 510006 China

2. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0245 USA

Abstract

AbstractSolid oxide electrolysis cells (SOECs) are promising energy conversion devices capable of efficiently transforming CO2 into CO, reducing CO2 emissions, and alleviating the greenhouse effect. However, the development of a suitable cathode material remains a critical challenge. Here a new SOEC cathode is reported for CO2 electrolysis consisting of high‐entropy Pr0.8Sr1.2(CuFe)0.4Mo0.2Mn0.2Nb0.2O4‐δ (HE‐PSCFMMN) layered perovskite uniformly coated with in situ exsolved core‐shell structured CuFe alloy@FeOx (CFA@FeO) nanoparticles. Single cells with the HE‐PSCFMMN‐CFA@FeO cathode exhibit a consistently high current density of 1.95 A cm−2 for CO2 reduction at 1.5 V while maintaining excellent stability for up to 200 h under 0.75 A cm−2 at 800 °C in pure CO2. In situ X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations confirm that the exsolution of CFA@FeO nanoparticles introduces additional oxygen vacancies within HE‐PSCFMMN substrate, acting as active reaction sites. More importantly, the abundant oxygen vacancies in FeOx shell, in contrast to conventional in situ exsolved nanoparticles, enable the extension of the triple‐phase boundary (TPB), thereby enhancing the kinetics of CO2 adsorption, dissociation, and reduction.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3