Affiliation:
1. State Key Laboratory for Modification of Chemical Fibres and Polymer Materials College of Chemistry and Chemical Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
Abstract
AbstractThe fusion of hierarchical tissues at interfaces, incorporating ultrafast selective transport channels, enables efficient matter exchange and energy transfer across multiscale structures in living organisms. However, achieving these characteristics simultaneously in an artificial multimaterial system is challenging. Here, this work presents a multimaterial hydrogel fiber with a hierarchical structure of interface fusion, which forms spontaneously through in situ hierarchy evolution induced by ionic cross‐linking and molecular shear flow. Water transport occurs in the angstrom‐scale confined slits created by aligned cellulose nanocrystals (CNCs) by direct Coulomb knock‐on, resembling Newton's cradle motion. The fusion of interfaces enables high‐efficiency water transport across multiscale layers, combined with Newton's cradle‐like collective water motion, creating a highly sensitive negative feedback loop within the fiber. These fibers exhibit integrated behaviors of time‐space perception, short‐term memory and adaptive changes in shape. Additionally, they demonstrate rhythm characteristics, changing periodically in a 24‐h day‐night cycle. Composed of natural building blocks, these hierarchical hydrogel fibers exhibit a memristor effect similar to that of an elementary neuron, making them promising for applications in seamless on‐skin and implantable bioelectronics.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献