Fast Transfer of Triplet to Doublet Excitons from Organometallic Host to Organic Radical Semiconductors

Author:

Gu Qinying12,Gorgon Sebastian1,Romanov Alexander S.3,Li Feng4,Friend Richard H.1,Evans Emrys W.5ORCID

Affiliation:

1. Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK

2. Shanghai Artificial Intelligence Laboratory Shanghai 200232 P. R. China

3. Department of Chemistry University of Manchester Oxford Rd. Manchester M13 9PL UK

4. State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Avenue 2699 Changchun 130012 P. R. China

5. Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP UK

Abstract

AbstractSpin triplet exciton formation sets limits on technologies using organic semiconductors that are confined to singlet‐triplet photophysics. In contrast, excitations in the spin doublet manifold in organic radical semiconductors can show efficient luminescence. Here the dynamics of the spin allowed process of intermolecular energy transfer from triplet to doublet excitons are explored. A carbene‐metal‐amide (CMA‐CF3) is employed as a model triplet donor host, since following photoexcitation it undergoes extremely fast intersystem crossing to generate a population of triplet excitons within 4 ps. This enables a foundational study for tracking energy transfer from triplets to a model radical semiconductor, TTM‐3PCz. Over 74% of all radical luminescence originates from the triplet channel in this system under photoexcitation. It is found that intermolecular triplet‐to‐doublet energy transfer can occur directly and rapidly, with 12% of triplet excitons transferring already on sub‐ns timescales. This enhanced triplet harvesting mechanism is utilized in efficient near‐infrared organic light‐emitting diodes, which can be extended to other opto‐electronic and ‐spintronic technologies by radical‐based spin control in molecular semiconductors.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

H2020 European Research Council

Royal Society

Simons Foundation

China Scholarship Council

Cambridge Trust

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3