Engineering Sub‐Nanometer Hafnia‐Based Ferroelectrics to Break the Scaling Relation for High‐Efficiency Piezocatalytic Water Splitting

Author:

Su Ran1,Zhang Jiahui1,Wong Vienna2,Zhang Dawei23ORCID,Yang Yong4ORCID,Luo Zheng‐Dong5,Wang Xiaojing1,Wen Hui6,Liu Yang7ORCID,Seidel Jan23ORCID,Yang Xiaolong8,Pan Ying9,Li Fa‐tang1ORCID

Affiliation:

1. Hebei Key Laboratory of Photoelectric Control on Surface and Interface College of Science Hebei University of Science and Technology Shijiazhuang 050018 P. R. China

2. School of Materials Science and Engineering University of New South Wales Australia Sydney New South Wales 2052 Australia

3. ARC Centre of Excellence in Future Low‐Energy Electronics Technologies UNSW Sydney Sydney NSW 2052 Australia

4. State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials Northwestern Polytechnical University Xi'an 710072 P. R. China

5. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology School of Microelectronics Xidian University Xi'an 710071 P. R. China

6. College of Electrical Engineering Hebei University of Science and Technology Shijiazhuang 050018 P. R. China

7. School of Materials Science and Engineering State Key Laboratory of Material Processing and Die & Mould Technology Huazhong University of Science and Technology Wuhan 430074 P. R. China

8. College of Physics & Chongqing Key Laboratory for Strongly Coupled Physics Center of Quantum Materials and Devices Chongqing University Chongqing 401331 P. R. China

9. Department of Chemistry University of Paderborn 33098 Paderborn Germany

Abstract

AbstractReversible control of ferroelectric polarization is essential to overcome the heterocatalytic kinetic limitation. This can be achieved by creating a surface with switchable electron density; however, owing to the rigidity of traditional ferroelectric oxides, achieving polarization reversal in piezocatalytic processes remains challenging. Herein, sub‐nanometer‐sized Hf0.5Zr0.5O2 (HZO) nanowires with a polymer‐like flexibility are synthesized. Oxygen K‐edge X‐ray absorption spectroscopy and negative spherical aberration‐corrected transmission electron microscopy reveal an orthorhombic (Pca21) ferroelectric phase of the HZO sub‐nanometer wires (SNWs). The ferroelectric polarization of the flexible HZO SNWs can be easily switched by slight external vibration, resulting in dynamic modulation of the binding energy of adsorbates and thus breaking the “scaling relationship” during piezocatalysis. Consequently, the as‐synthesized ultrathin HZO nanowires display superb water‐splitting activity, with H2 production rate of 25687 µmol g−1 h−1 under 40 kHz ultrasonic vibration, which is 235 and 41 times higher than those of non‐ferroelectric hafnium oxides and rigid BaTiO3 nanoparticles, respectively. More strikingly, the hydrogen production rates can reach 5.2 µmol g−1 h−1 by addition of stirring exclusively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Australian Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3