Mechanical and Functional Responses in Astrocytes under Alternating Deformation Modes Using Magneto‐Active Substrates

Author:

Gomez‐Cruz Clara12,Fernandez‐de la Torre Miguel1,Lachowski Dariusz13,Prados‐de‐Haro Martin1,del Río Hernández Armando E.3,Perea Gertrudis4,Muñoz‐Barrutia Arrate256,Garcia‐Gonzalez Daniel1ORCID

Affiliation:

1. Department of Continuum Mechanics and Structural Analysis Universidad Carlos III de Madrid Avda. de la Universidad 30 28911 Leganés Madrid Spain

2. Departamento de Bioingeniería Universidad Carlos III de Madrid Avda. de la Universidad 30 28911 Leganés Madrid Spain

3. Cellular and Molecular Biomechanics Laboratory Department of Bioengineering Imperial College London London SW7 2AZ UK

4. Department of Functional and Systems Neurobiology Instituto Cajal, CSIC Av. Doctor Arce, 37. 28002 Leganés Madrid Spain

5. Área de Ingeniería Biomédica Instituto de Investigación Sanitaria Gregorio Marañón Calle del Doctor Esquerdo 46 Leganés Madrid ES28007 Spain

6. Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N Charles St Baltimore Maryland 21218 USA

Abstract

AbstractThis work introduces NeoMag, a system designed to enhance cell mechanics assays in substrate deformation studies. NeoMag uses multidomain magneto‐active materials to mechanically actuate the substrate, transmitting reversible mechanical cues to cells. The system boasts full flexibility in alternating loading substrate deformation modes, seamlessly adapting to both upright and inverted microscopes. The multidomain substrates facilitate mechanobiology assays on 2D and 3D cultures. The integration of the system with nanoindenters allows for precise evaluation of cellular mechanical properties under varying substrate deformation modes. The system is used to study the impact of substrate deformation on astrocytes, simulating mechanical conditions akin to traumatic brain injury and ischemic stroke. The results reveal local heterogeneous changes in astrocyte stiffness, influenced by the orientation of subcellular regions relative to substrate strain. These stiffness variations, exceeding 50% in stiffening and softening, and local deformations significantly alter calcium dynamics. Furthermore, sustained deformations induce actin network reorganization and activate Piezo1 channels, leading to an initial increase followed by a long‐term inhibition of calcium events. Conversely, fast and dynamic deformations transiently activate Piezo1 channels and disrupt the actin network, causing long‐term cell softening. These findings unveil mechanical and functional alterations in astrocytes during substrate deformation, illustrating the multiple opportunities this technology offers.

Funder

H2020 European Research Council

HORIZON EUROPE European Research Council

Ministerio de Universidades

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación

European Regional Development Fund

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3