Affiliation:
1. Key Laboratory of Precision and Intelligent Chemistry Department of Applied Chemistry School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
2. Yongjiang Laboratory Ningbo 315202 P. R. China
Abstract
AbstractAlkaline zinc‐based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual‐function electrolyte additive strategy is proposed to regulate zinc nucleation and mitigate the hydroxide corrosion of zinc depositions for stable AZFBs. This strategy, as exemplified by urea, introduces an electrolyte additive to coordinate with Zn2+/Zn with proper strength, slowing zinc deposition kinetics to induce uniform nucleation and protecting the deposited zinc surface from attack by hydroxide ions through preferable adsorption. The zincate complexes with urea are identified to be Zn(OH)2(urea)(H2O)2 and Zn2(OH)4(H2O)4(urea), which exhibit slow zinc deposition kinetics, allowing instantaneous nucleation. Calculation results reveal an additional energy barrier of 1.29 eV for the subsequent adsorption of an OH− group when a urea molecule absorbs on the zinc cluster, significantly mitigating the formation of dead zinc. Consequently, prolonged cell cycling of the prototype alkaline zinc‐iron flow battery demonstrates stable operation for over 130 h and an average coulombic efficiency of 98.5%. It is anticipated that this electrolyte additive strategy will pave the way for developing highly stable AZFBs.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献