Rationalized Electroepitaxy toward Scalable Single‐Crystal Zn Anodes

Author:

Su Yiwen1,Chen Buhang12,Sun Yingjie3,Xue Zaikun12,Zou Yuhan1,Yang Dongzi1,Sun Luzhao2,Yang Xianzhong1,Li Chao4,Yang Yujia2,Song Xiuju5,Guo Wenyi1,Dou Shixue6,Chao Dongliang7,Liu Zhongfan12,Sun Jingyu12ORCID

Affiliation:

1. College of Energy Soochow Institute for Energy and Materials Innovations Light Industry Institute of Electrochemical Power Sources Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P. R. China

2. Beijing Graphene Institute Beijing 100095 P. R. China

3. Key Laboratory of Photoelectric Control on Surface and Interface of Hebei Province College of Science Hebei University of Science and Technology Shijiazhuang 050018 P. R. China

4. School of Materials Science and Engineering Shandong University of Technology Zibo 255049 P. R. China

5. Department of Chemistry University of Manchester Manchester M13 9PL UK

6. Institute of Energy Materials Science University of Shanghai for Science and Technology Shanghai 200093 P. R. China

7. Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and School of Chemistry and Materials Fudan University Shanghai 200433 P. R. China

Abstract

AbstractElectroepitaxy is recognized as an effective approach to prepare metal electrodes with nearly complete reversibility. Nevertheless, large‐scale manipulation is still not attainable owing to complicated interfacial chemistry. Here, the feasibility of extending Zn electroepitaxy toward the bulk phase over a mass‐produced mono‐oriented Cu(111) foil is demonstrated. Interfacial Cu–Zn alloy and turbulent electroosmosis are circumvented by adopting a potentiostatic electrodeposition protocol. The as‐prepared Zn single‐crystalline anode enables stable cycling of symmetric cells at a stringent current density of 50.0 mA cm−2. The assembled full cell further sustaines a capacity retention of 95.7% at 5.0 A g−1 for 1500 cycles, accompanied by a controllably low N/P ratio of 7.5. In addition to Zn, Ni electroepitaxy can be realized by using the same approach. This study may inspire rational exploration of the design of high‐end metal electrodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3