Molecular Tuning of a Benzene‐1,3,5‐Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM‐Mimetic Hydrogels and Bioinks

Author:

Hafeez Shahzad1,Aldana Ana A.1,Duimel Hans2,Ruiter Floor A. A.13,Decarli Monize Caiado1,Lapointe Vanessa3,van Blitterswijk Clemens1,Moroni Lorenzo1,Baker Matthew B.1ORCID

Affiliation:

1. Department of Complex Tissue Regeneration MERLN Institute for Technology‐Inspired Regenerative Medicine Maastricht University P.O. Box 616 Maastricht 6200 MD The Netherlands

2. Maastricht MultiModal Molecular Imaging (M4I) Institute Maastricht University P.O. Box 616 Maastricht 6200 MD The Netherlands

3. Department of Cell Biology‐Inspired Tissue Engineering MERLN Institute for Technology‐Inspired Regenerative Medicine Maastricht University P.O. Box 616 Maastricht 6200 MD The Netherlands

Abstract

AbstractTraditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle‐neck to biomimetic hydrogel environments. Here, the molecular tuning of a supramolecular benzene‐1,3,5‐tricarboxamide (BTA) hydrogelator via simple modulation of hydrophobic substituents is reported. This tuning results in fibrous hydrogels with accessible viscoelasticity over 5 orders of magnitude, while maintaining a constant equilibrium storage modulus. BTA hydrogelators are created with systematic variations in the number of hydrophobic carbon atoms, and this is observed to control the viscoelasticity and stress‐relaxation timescales in a logarithmic fashion. Some of these BTA hydrogels are shear‐thinning, self‐healing, extrudable, and injectable, and can be 3D printed into multiple layers. These hydrogels show high cell viability for chondrocytes and human mesenchymal stem cells, establishing their use in tissue engineering applications. This simple molecular tuning by changing hydrophobicity (with just a few carbon atoms) provides precise control over the viscoelasticity and 3D printability in fibrillar hydrogels and can be ported onto other 1D self‐assembling structures. The molecular control and design of hydrogel network dynamics can push the field of supramolecular chemistry toward the design of new ECM‐mimicking hydrogelators for numerous cell‐culture and tissue‐engineering applications and give access toward highly biomimetic bioinks for bioprinting.

Funder

European Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3