Affiliation:
1. Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
Abstract
AbstractHelicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light‐emitting diodes (CP‐OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet‐harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene‐based emitters that is strategically engineered through the helical extension of a deep‐blue double‐boron‐based multiple resonance thermally activated delayed fluorescence (MR‐TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep‐blue emission and MR‐TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10−3. Exploiting these merits, devices incorporating the chiral dopants demonstrate deep‐blue emission within the Broadcast Service Television 2020 color‐gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors’ findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high‐definition displays.
Funder
National Natural Science Foundation of China
Science, Technology and Innovation Commission of Shenzhen Municipality
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献