Deep‐Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High‐Performance OLEDs

Author:

Ye Zeyuan1,Wu Han1,Xu Yulin1,Hua Tao1,Chen Guohao1,Chen Zhanxiang1,Yin Xiaojun1,Huang Manli1,Xu Ke1,Song Xiufang1,Huang Zhongyan1,Lv Xialei1,Miao Jingsheng1,Cao Xiaosong1ORCID,Yang Chuluo1ORCID

Affiliation:

1. Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China

Abstract

AbstractHelicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light‐emitting diodes (CP‐OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet‐harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene‐based emitters that is strategically engineered through the helical extension of a deep‐blue double‐boron‐based multiple resonance thermally activated delayed fluorescence (MR‐TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep‐blue emission and MR‐TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10−3. Exploiting these merits, devices incorporating the chiral dopants demonstrate deep‐blue emission within the Broadcast Service Television 2020 color‐gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors’ findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high‐definition displays.

Funder

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3