Low‐Cost Hydrogen Production from Alkaline/Seawater over a Single‐Step Synthesis of Mo3Se4‐NiSe Core–Shell Nanowire Arrays

Author:

Poudel Milan Babu12,Logeshwaran Natarajan1,Prabhakaran Sampath3,Kim Ae Rhan1,Kim Do Hwan4,Yoo Dong Jin12ORCID

Affiliation:

1. Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School Hydrogen and Fuel Cell Research Center Jeonbuk National University 567 Baekje‐daero, Deokjin‐gu Jeonju‐si Jeollabuk‐do 54896 Republic of Korea

2. Department of Life Science Jeonbuk National University 567 Baekje‐daero, Deokjin‐gu Jeonju‐si Jeollabuk‐do 54896 Republic of Korea

3. Department of Nano Convergence Engineering Jeonbuk National University 567 Baekje‐daero, Deokjin‐gu Jeonju‐si Jeollabuk‐do 54896 Republic of Korea

4. Devison of Science Education Jeonbuk National University 567 Baekje‐daero, Deokjin‐gu Jeonju‐si Jeollabuk‐do 54896 Republic of Korea

Abstract

AbstractThe rational design and steering of earth‐abundant, efficient, and stable electrocatalysts for hydrogen generation is highly desirable but challenging with catalysts free of platinum group metals (PGMs). Mass production of high‐purity hydrogen fuel from seawater electrolysis presents a transformative technology for sustainable alternatives. Here, a heterostructure of molybdenum selenide‐nickel selenide (Mo3Se4‐NiSe) core–shell nanowire arrays constructed on nickel foam by a single‐step in situ hydrothermal process is reported. This tiered structure provides improved intrinsic activity and high electrical conductivity for efficient charge transfer and endows excellent hydrogen evolution reaction (HER) activity in alkaline and natural seawater conditions. The Mo3Se4‐NiSe freestanding electrodes require small overpotentials of 84.4 and 166 mV to reach a current density of 10 mA cm−2 in alkaline and natural seawater electrolytes, respectively. It maintains an impressive balance between electrocatalytic activity and stability. Experimental and theoretical calculations reveal that the Mo3Se4‐NiSe interface provides abundant active sites for the HER process, which modulate the binding energies of adsorbed species and decrease the energetic barrier, providing a new route to design state‐of‐the‐art, PGM‐free catalysts for hydrogen production from alkaline and seawater electrolysis.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3