Controlled Interfacial Polymer Self‐Assembly Coordinates Ultrahigh Drug Loading and Zero‐Order Release in Particles Prepared under Continuous Flow

Author:

Zhang Pei12,Liu Yingxin1,Feng Guobing1,Li Cong3,Zhou Jun1,Du Chunyang1,Bai Yuancheng1,Hu Shuai1,Huang Tianhe1,Wang Guan1,Quan Peng4,Hirvonen Jouni2,Fan Jin3,Santos Hélder A.256ORCID,Liu Dongfei127

Affiliation:

1. State Key Laboratory of Natural Medicines Department of Pharmaceutical Science NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients China Pharmaceutical University Nanjing 210009 China

2. Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland

3. Department of Orthopedics The First Affiliated Hospital of Nanjing Medical University Nanjing 210029 China

4. Department of Pharmaceutical Science School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 China

5. Department of Biomedical Engineering University Medical Center Groningen University of Groningen Ant. Deusinglaan 1 Groningen 9713 AV The Netherlands

6. W.J. Kolff Institute for Biomedical Engineering and Materials Science University Medical Center Groningen University of Groningen Ant. Deusinglaan 1 Groningen 9713 AV The Netherlands

7. Chongqing Innovation Institute of China Pharmaceutical University Chongqing 401135 China

Abstract

AbstractMicroparticles are successfully engineered through controlled interfacial self‐assembly of polymers to harmonize ultrahigh drug loading with zero‐order release of protein payloads. To address their poor miscibility with carrier materials, protein molecules are transformed into nanoparticles, whose surfaces are covered with polymer molecules. This polymer layer hinders the transfer of cargo nanoparticles from oil to water, achieving superior encapsulation efficiency (up to 99.9%). To control payload release, the polymer density at the oil–water interface is enhanced, forming a compact shell for microparticles. The resultant microparticles can harvest up to 49.9% mass fraction of proteins with zero‐order release kinetics in vivo, enabling an efficient glycemic control in type 1 diabetes. Moreover, the precise control of engineering process offered through continuous flow results in high batch‐to‐batch reproducibility and, ultimately, excellent scale‐up feasibility.

Funder

National Natural Science Foundation of China

Academy of Finland

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3