2D Photonic Colloidal Liquid Crystals Composed of Self‐Assembled Rod‐Shaped Particles

Author:

Kato Riki1ORCID,Mikami Takahiro1ORCID,Kato Takashi12ORCID

Affiliation:

1. Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan

2. Research Initiative for Supra‐Materials Shinshu University 4‐17‐1 Wakasato Nagano 380‐8553 Japan

Abstract

AbstractPhotonic crystals, characterized by their periodic structures, have been extensively studied for their ability to manipulate light. Typically, the development of 2D photonic crystals requires either sophisticated equipment or precise orientation of spherical nanoparticles. However, liquid‐crystalline (LC) materials offer a promising alternative, facilitating the formation of periodic structures without the need for complex manipulation. Despite this advantage, the development of 2D photonic periodic structures using LC materials is limited to a few colloidal nanodisk liquid crystals. Herein, 2D photonic colloidal liquid crystals composed of biomineral‐based nanorods and water is reported. The soft photonic materials with 2D structure by self‐assembled LC colloidal nanorods are unique and a new class of photonic materials different from conventional solid 2D photonic materials. These colloids exhibit bright structural colors with high reflectance (>50%) and significant angular dependency. The structural colors are adjusted by controlling the concentration and size of the LC colloidal nanorods. Furthermore, mechanochromic hydrogel thin films with 2D photonic structure are developed. The hydrogels exhibit reversible mechanochromic properties with angular dependency, which can be used for an advanced stimuli responsible sensor.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3