Mott–Schottky Construction Boosted Plasmon Thermal and Electronic Effects on the Ag/CoV‐LDH Nanohybrids for Highly‐Efficient Water Oxidation

Author:

Lu Xuyun1ORCID,Ma Zhangyu1ORCID,Chang Yanan1ORCID,Wang Shasha1ORCID,Li Xiaoxuan1,Xu Dongdong1ORCID,Bao Jianchun1ORCID,Liu Ying1ORCID

Affiliation:

1. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China

Abstract

AbstractMott–Schottky construction and plasmon excitation represent two highly‐efficient and closely‐linked coping strategies to the high energy loss of oxygen evolution reaction (OER), but the combined effect has rarely been investigated. Herein, with Ag nanoparticles as electronic structure regulator and plasmon exciter, Ag/CoV‐LDH@G nanohybrids (NHs) with Mott–Schottky heterojunction and notable plasmon effect are well‐designed. Combining theoretical calculations with experiments, it is found that the Mott–Schottky construction modulates the Fermi level/energy band structure of CoV‐LDH, which in turn leads to lowered d‐band center (from −0.89 to −0.93), OER energy barrier (from 6.78 to 1.31 eV), and preeminent plasmon thermal/electronic effects. The thermal effect can offset the endothermic enthalpy change of OER, promote the deprotonation of *OOH, and accelerate electron transfer kinetics. Whereas the electronic effect can increase the density of charge carriers (from 0.70 × 1020 to 1.64 × 1020 cm−3), lower the activation energy of OER (from 30.3 to 17.7 kJ mol−1). Benefiting from these favorable factors, the Ag/CoV‐LDH@G NHs show remarkable electrocatalytic performances, with an overpotential of 178 and 263 mV to afford 10 and 100 mA cm−2 for OER, respectively, and a low cell voltage of 1.42 V to drive 10 mA cm−2 for overall water splitting under near‐infrared light irradiation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3