Inhibited Passivation by Bioinspired Cell Membrane Zn Interface for Zn–Air Batteries with Extended Temperature Adaptability

Author:

Bai Yu1,Deng Danni1,Wang Jinxian1,Wang Yuchao1,Chen Yingbi1,Zheng Huanran1,Liu Mengjie1,Zheng Xinran1,Jiang Jiabi1,Zheng Haitao1,Yi Maozhong1,Li Weijie1,Fang Guozhao2,Wang Dingsheng3ORCID,Lei Yongpeng1ORCID

Affiliation:

1. State Key Laboratory of Powder Metallurgy Central South University Changsha 410083 P. R. China

2. Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province School of Materials Science and Engineering Central South University Changsha 410083 P. R. China

3. Department of Chemistry Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractDue to the slow dynamics of mass and charge transfer at Zn|electrolyte interface, the stable operation of Zn–air batteries (ZABs) is challenging, especially at low temperature. Herein, inspired by cell membrane, a hydrophilic‐hydrophobic dual modulated Zn|electrolyte interface is constructed. This amphiphilic design enables the quasi‐solid‐state (QSS) ZABs to display a long‐term cyclability of 180 h@50 mA cm−2 at 25 °C. Moreover, a record‐long time of 173 h@4 mA cm−2 at −60 °C is also achieved, which is almost threefolds of untreated QSS ZABs. Control experiments and (in situ) characterization reveal that the growth of insulating ZnO passivation layers is largely inhibited by tuned hydrophilic–hydrophobic behavior. Thus, the enhanced transfer dynamic of Zn2+ at Zn|electrolyte interface from 25 to −60 °C is attained. As an extension, the QSS Al‐air batteries (AABs) with bioinspired interface also show unprecedented discharge stability of 420 h@1 mA cm−2 at ‐40 °C, which is about two times of untreated QSS AABs. This bioinspired‐hydrophilic‐hydrophobic dual modulation strategy may provide a reference for energy transform and storage devices with broad temperature adaptability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3