Direct Visualization of Defect‐Controlled Diffusion in van der Waals Gaps

Author:

Thomsen Joachim Dahl12ORCID,Wang Yaxian3,Flyvbjerg Henrik4,Park Eugene2,Watanabe Kenji5,Taniguchi Takashi6,Narang Prineha1,Ross Frances M.2

Affiliation:

1. Division of Physical Sciences College of Letters and Science University of California Los Angeles CL 90095 USA

2. Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

3. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China

4. Mark Kac Center for Complex Systems Research Jagiellonian University Kraków Poland

5. Research Center for Electronic and Optical Materials National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

6. Research Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

Abstract

AbstractDiffusion processes govern fundamental phenomena such as phase transformations, doping, and intercalation in van der Waals (vdW) bonded materials. Here, the diffusion dynamics of W atoms by visualizing the motion of individual atoms at three different vdW interfaces: hexagonal boron nitride (BN)/vacuum, BN/BN, and BN/WSe2, by recording scanning transmission electron microscopy movies is quantified. Supported by density functional theory (DFT) calculations, it is inferred that in all cases diffusion is governed by intermittent trapping at electron beam‐generated defect sites. This leads to diffusion properties that depend strongly on the number of defects. These results suggest that diffusion and intercalation processes in vdW materials are highly tunable and sensitive to crystal quality. The demonstration of imaging, with high spatial and temporal resolution, of layers and individual atoms inside vdW heterostructures offers possibilities for direct visualization of diffusion and atomic interactions, as well as for experiments exploring atomic structures, their in situ modification, and electrical property measurements of active devices combined with atomic resolution imaging.

Funder

Basic Energy Sciences

Army Research Office

Gordon and Betty Moore Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3