Bottom‐Up Magnesium Deposition Induced by Paper‐Based Triple‐Gradient Scaffolds toward Flexible Magnesium Metal Batteries

Author:

Bi Jingxuan1,Liu Yuhang1,Du Zhuzhu1,Wang Ke1,Guan Wanqing1,Wu Haiwei2,Ai Wei1,Huang Wei1ORCID

Affiliation:

1. Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics Northwestern Polytechnical University Xi'an 710072 China

2. Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an 710021 China

Abstract

AbstractThe development of advanced magnesium metal batteries (MMBs) has been hindered by longstanding challenges, such as the inability to induce uniform magnesium (Mg) nucleation and the inefficient utilization of Mg foil. This study introduces a novel solution in the form of a flexible, lightweight, paper‐based scaffold that incorporates gradient conductivity, magnesiophilicity, and pore size. This design is achieved through an industrially adaptable papermaking process in which the ratio of carboxylated multi‐walled carbon nanotubes to softwood cellulose fibers is meticulously adjusted. The triple‐gradient structure of the scaffold enables the regulation of Mg ion flux, promoting bottom‐up Mg deposition. Owing to its high flexibility, low thickness, and reduced density, the scaffold has potential applications in flexible and wearable electronics. Accordingly, the triple‐gradient electrodes exhibit stable operation for over 1200 h at 3 mA cm−2/3 mAh cm−2 in symmetrical cells, markedly outperforming the non‐gradient and metallic Mg alternatives. Notably, this study marks the first successful fabrication of a flexible MMB pouch full cell, achieving an impressive volumetric energy density of 244 Wh L−1. The simplicity and scalability of the triple‐gradient design, which uses readily available materials through an industrially compatible papermaking process, open new doors for the production of flexible, high‐energy‐density metal batteries.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3