Affiliation:
1. Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics Northwestern Polytechnical University Xi'an 710072 China
2. Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an 710021 China
Abstract
AbstractThe development of advanced magnesium metal batteries (MMBs) has been hindered by longstanding challenges, such as the inability to induce uniform magnesium (Mg) nucleation and the inefficient utilization of Mg foil. This study introduces a novel solution in the form of a flexible, lightweight, paper‐based scaffold that incorporates gradient conductivity, magnesiophilicity, and pore size. This design is achieved through an industrially adaptable papermaking process in which the ratio of carboxylated multi‐walled carbon nanotubes to softwood cellulose fibers is meticulously adjusted. The triple‐gradient structure of the scaffold enables the regulation of Mg ion flux, promoting bottom‐up Mg deposition. Owing to its high flexibility, low thickness, and reduced density, the scaffold has potential applications in flexible and wearable electronics. Accordingly, the triple‐gradient electrodes exhibit stable operation for over 1200 h at 3 mA cm−2/3 mAh cm−2 in symmetrical cells, markedly outperforming the non‐gradient and metallic Mg alternatives. Notably, this study marks the first successful fabrication of a flexible MMB pouch full cell, achieving an impressive volumetric energy density of 244 Wh L−1. The simplicity and scalability of the triple‐gradient design, which uses readily available materials through an industrially compatible papermaking process, open new doors for the production of flexible, high‐energy‐density metal batteries.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献