Latest Innovations in 2D Flexible Nanoelectronics

Author:

Aftab Sikandar1ORCID,Hussain Sajjad2,Al‐Kahtani Abdullah A.3

Affiliation:

1. Department of Intelligent Mechatronics Engineering Sejong University Seoul 05006 South Korea

2. Department of Nanotechnology and Advanced Materials Engineering Sejong University Seoul 05006 South Korea

3. Chemistry Department Collage of Science King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia

Abstract

Abstract2D materials with dangling‐bond‐free surfaces and atomically thin layers have been shown to be capable of being incorporated into flexible electronic devices. The electronic and optical properties of 2D materials can be tuned or controlled in other ways by using the intriguing strain engineering method. The latest and encouraging techniques in regard to creating flexible 2D nanoelectronics are condensed in this review. These techniques have the potential to be used in a wider range of applications in the near and long term. It is possible to use ultrathin 2D materials (graphene, BP, WTe2, VSe2 etc.) and 2D transition metal dichalcogenides (2D TMDs) in order to enable the electrical behavior of the devices to be studied. A category of materials is produced on smaller scales by exfoliating bulk materials, whereas chemical vapor deposition (CVD) and epitaxial growth are employed on larger scales. This overview highlights two distinct requirements, which include from a single semiconductor or with van der Waals heterostructures of various nanomaterials. They include where strain must be avoided and where it is required, such as solutions to produce strain‐insensitive devices, and such as pressure‐sensitive outcomes, respectively. Finally, points‐of‐view about the current difficulties and possibilities in regard to using 2D materials in flexible electronics are provided.

Funder

National Research Foundation of Korea

King Saud University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3