Light Management of Metal Halide Scintillators for High‐Resolution X‐Ray Imaging

Author:

Xu Xiuwen1ORCID,Xie Yue‐Min2,Shi Huaiyao1,Wang Yongquan3,Zhu Xianjun1,Li Bing‐Xiang1,Liu Shujuan3,Chen Bing1,Zhao Qiang13ORCID

Affiliation:

1. College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications Nanjing 210023 P. R. China

2. Institute of Functional Nano & Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices Soochow University Suzhou 215123 P. R. China

3. State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing 210023 P. R. China

Abstract

AbstractThe ever‐growing need to inspect matter with hyperfine structures requires a revolution in current scintillation detectors, and the innovation of scintillators is revived with luminescent metal halides entering the scene. Notably, for any scintillator, two fundamental issues arise: Which kind of material is suitable and in what form should the material exist? The answer to the former question involves the sequence of certain atoms into specific crystal structures that facilitate the conversion of X‐ray into light, whereas the answer to the latter involves assembling these crystallites into particular material forms that can guide light propagation toward its corresponding pixel detector. Despite their equal importance, efforts are overwhelmingly devoted to improving the X‐ray‐to‐light conversion, while the material‐form‐associated light propagation, which determines the optical signal collected for X‐ray imaging, is largely overlooked. This perspective critically correlates the reported spatial resolution with the light‐propagation behavior in each form of metal halides, combing the designing rules for their future development.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3