Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems

Author:

Yang Fengjiu12,Tockhorn Philipp1,Musiienko Artem1,Lang Felix3,Menzel Dorothee1,Macqueen Rowan1,Köhnen Eike1,Xu Ke1,Mariotti Silvia1,Mantione Daniele456,Merten Lena7,Hinderhofer Alexander7,Li Bor1,Wargulski Dan R.1,Harvey Steven P.8,Zhang Jiahuan1,Scheler Florian1,Berwig Sebastian1,Roß Marcel1ORCID,Thiesbrummel Jarla9,Al‐Ashouri Amran1,Brinkmann Kai O.1011,Riedl Thomas1011,Schreiber Frank7,Abou‐Ras Daniel1,Snaith Henry9,Neher Dieter3,Korte Lars1,Stolterfoht Martin312,Albrecht Steve113ORCID

Affiliation:

1. Division Solar Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH 12489 Berlin Germany

2. National Renewable Energy Laboratory Golden Colorado 80401 USA

3. Institute of Physics and Astronomy University of Potsdam 14476 Potsdam‐Golm Germany

4. POLYMAT University of the Basque Country UPV/EHU Av. Tolosa 72 Donostia‐San Sebastián 20018 Spain

5. IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain

6. POLYKEY s.l. Av. Tolosa 72 Donostia‐San Sebastián 20018 Spain

7. Institute of Applied Physics University of Tübingen 72076 Tübingen Germany

8. Materials, Chemical and Computational Sciences (MCCS) National Renewable Energy Laboratory Golden CO 80401 USA

9. Clarendon Laboratory Department of Advanced Materials and Interfaces for Photovoltaic Solar Cells University of Oxford Parks Road Oxford OX1 3PU UK

10. Institute of Electronic Devices University of Wuppertal 42119 Wuppertal Germany

11. Wuppertal Center for Smart Materials & Systems University of Wuppertal 42119 Wuppertal Germany

12. Electronic Engineering Department The Chinese University of Hong Kong Hong Kong SAR China

13. Faculty of Electrical Engineering and Computer Science Technische Universität Berlin Berlin Germany

Abstract

AbstractAll‐perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide‐bandgap (WBG) perovskites with higher open‐circuit voltage (VOC) are essential to further improve the tandem solar cells’ performance. Here, a new 1.8 eV bandgap triple‐halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light‐induced magneto‐transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady‐state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC, reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

Funder

Deutsche Forschungsgemeinschaft

Engineering and Physical Sciences Research Council

U.S. Department of Energy

Office of Energy Efficiency and Renewable Energy

Helmholtz Association

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3