Positively Charged Hollow Co Nanoshells by Kirkendall Effect Stabilized by Electron Sink for Alkaline Water Dissociation

Author:

Zhang Tao1,Hang Lifeng2,Liu Qingyi1,Tao Shi3,Bao Haoming1,Fan Hong Jin1ORCID

Affiliation:

1. School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore

2. Department of Medical Imaging Guangdong Second Provincial General Hospital Jinan University Guangzhou 518037 China

3. School of Electronic and Information Engineering Jiangsu Laboratory of Advanced Functional Materials Changshu Institute of Technology Changshu 215500 China

Abstract

AbstractWhile cobalt (Co) exhibits a comparable energy barrier for H* adsorption/desorption to platinum in theory, it is generally not suitable for alkaline hydrogen evolution reaction (HER) because of unfavorable water dissociation. Here, the Kirkendall effect is adopted to fabricate positive‐charged hollow metal Co (PHCo) nanoshells that are stabilized by MoO2 and chainmail carbon as the electron sink. Compared to the zero‐valent Co, the PHCo accelerates the water dissociation and changes the rate‐determining step from Volmer to Heyrovsky process. Alkaline HER occurs with a low overpotential of 59.0 mV at 10 mA cm−2. Operando Raman and first principles calculations reveal that the interfacial water to the PHCo sites and the accelerated proton transfer are conducive to the adsorption and dissociation of H2O molecules. Meanwhile, the upshifted d‐band center of PHCo optimizes the adsorption/desorption of H*. This work provides a unique synthesis of hollow Co nanoshells via the Kirkendall effect and insights to water dissociation on catalyst surfaces with tailored charge states.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Ministry of Education - Singapore

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3