Triple Threshold Transitions and Strong Polariton Interaction in 2D Layered Metal–Organic Framework Microplates

Author:

Kottilil Dileep1ORCID,Gupta Mayank1,Lu Shunbin2,Babusenan Anu1,Ji Wei12ORCID

Affiliation:

1. Department of Physics National University of Singapore 3, Science Drive 3 Singapore 117542 Singapore

2. SZU‐NUS Collaborative Innovation Centre for Optoelectronic Science and Technology International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen Guangdong 518060 P. R. China

Abstract

AbstractRoom‐temperature interaction between light–matter hybrid particles such as exciton–polaritons under extremely low‐pump plays a crucial role in future coherent quantum light sources. However, the practical and scalable realization of coherent quantum light sources operating under low‐pump remains a challenge because of the insufficient polariton interaction strength. Here, at room temperature, a very large polariton interaction strength is demonstrated, g ≈ 128 ± 21 µeV µm2 realized in a 2D nanolayered metal–organic framework (MOF). As a result, a polariton lasing at an extremely low pump fluence of P1 ≈ 0.01 ± 0.0015 µJ cm−2 (first threshold) is observed. Interestingly, as pump fluence increases to P2 ≈ 0.031 ± 0.003 µJ cm−2 (second threshold), a spontaneous transition to a polariton breakdown region occurs, which has not been reported before. Finally, an ordinary photon lasing occurs at P3 ≈ 0.11 ± 0.077 µJ cm−2 (third threshold), or above. These experiments and the theoretical model reveal new insights into the transition mechanisms characterized by three distinct optical regions. This work introduces MOF as a new type of quantum material, with naturally formed polariton cavities, that is a cost‐effective and scalable solution to build microscale coherent quantum light sources and polaritonic devices.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3