Compressible Polymer Composites with Enhanced Dielectric Temperature Stability

Author:

Tang Tongxiang1,Yang Wenfeng12,Shen Zhonghui3,Wang Jian3,Guo Mengfan14,Xiao Yao1,Ren Weibin1,Ma Jing1,Yu Rong12,Nan Ce‐Wen1,Shen Yang14ORCID

Affiliation:

1. State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China

2. MOE Key Laboratory of Advanced Materials Tsinghua University Beijing 100084 China

3. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center of Smart Materials and Devices Wuhan University of Technology Wuhan 430070 China

4. Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China

Abstract

AbstractHigh‐dielectric‐constant polymer composites have broad application prospects in flexible electronics and electrostatic energy storage capacitors. Substantial enhancement in dielectric constants (εr) of polymer composites so far can only be obtained at a high loading of nanofillers, resulting in high dielectric loss and high elastic modulus of polymer composites. Addressing the polarization shielding and the consequent polarization discontinuity at polymer/filler interfaces has been a long‐standing challenge to achieve flexible polymer composite with high εr. Herein, a polymer composite with interconnected BaTiO3 (BT) ceramic scaffold is proposed and demonstrated, which exhibits a high εr of ≈210 at a low BT volume fraction of ≈18 vol%, approaching the upper limit predicted by the parallel model. By incorporating relaxor Ba(ZrxTi1−x)O3 phase in BT scaffold, dielectric temperature stability is further achieved with Δεr below ±10% within a broad temperature range (25–140 °C). Moreover, the dielectric performances remain stable under a compressive strain of up to 80%. This work provides a facile approach to construct large‐scale polymer composites with robust dielectric performance against changes in thermal and mechanical conditions, which are promising for high‐temperature applications in flexible electronics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3