Constructing an Interfacial Gradient Heterostructure Enables Efficient CsPbI3 Perovskite Solar Cells and Printed Minimodules

Author:

Tan Shan12,Tan Chengyu12,Cui Yuqi13,Yu Bingcheng14,Li Yiming14,Wu Huijue1,Shi Jiangjian1,Luo Yanhong135,Li Dongmei135,Meng Qingbo156ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics Renewable Energy Laboratory Institute of Physics Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China

2. College of Materials Science and Opto‐Electronic Technology University Chinese Academy of Sciences Beijing 100049 P. R. China

3. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China

4. Huairou Division Institute of Physics Chinese Academy of Sciences Beijing 101407 P. R. China

5. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 P. R. China

6. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractSevere nonradiative recombination originating from interfacial defects together with the pervasive energy level mismatch at the interface remarkably limits the performance of CsPbI3 perovskite solar cells (PSCs). These issues need to be addressed urgently for high‐performance cells and their applications. Herein, an interfacial gradient heterostructure based on low‐temperature post‐treatment of quaternary bromide salts for efficient CsPbI3 PSCs with an impressive efficiency of 21.31% and an extraordinary fill factor of 0.854 is demonstrated. Further investigation reveals that Br ions diffuse into the perovskite films to heal undercoordinated Pb2+ and inhibit Pb cluster formation, thus suppressing nonradiative recombination in CsPbI3. Meanwhile, a more compatible interfacial energy level alignment resulting from Br gradient distribution and organic cations surface termination is also achieved, hence promoting charge separation and collection. Consequently, the printed small‐size cell with an efficiency of 20.28% and 12 cm2 printed CsPbI3 minimodules with a record efficiency of 16.60% are also demonstrated. Moreover, the unencapsulated CsPbI3 films and devices exhibit superior stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3