Universal Ensemble‐Embedding Graph Neural Network for Direct Prediction of Optical Spectra from Crystal Structures

Author:

Hung Nguyen Tuan12,Okabe Ryotaro23,Chotrattanapituk Abhijatmedhi24,Li Mingda25

Affiliation:

1. Frontier Research Institute for Interdisciplinary Sciences Tohoku University Sendai 980‐8578 Japan

2. Quantum Measurement Group MIT Cambridge MA 02139‐4307 USA

3. Department of Chemistry MIT Cambridge MA 02139‐4307 USA

4. Department of Electrical Engineering and Computer Science MIT Cambridge MA 02139‐4307 USA

5. Department of Nuclear Science and Engineering MIT Cambridge MA 02139‐4307 USA

Abstract

AbstractOptical properties in solids, such as refractive index and absorption, hold vast applications ranging from solar panels to sensors, photodetectors, and transparent displays. However, first‐principles computation of optical properties from crystal structures is a complex task due to the high convergence criteria and computational cost. Recent progress in machine learning shows promise in predicting material properties, yet predicting optical properties from crystal structures remains challenging due to the lack of efficient atomic embeddings. Here, Graph Neural Network for Optical spectra prediction (GNNOpt) is introduced, an equivariant graph‐neural‐network architecture featuring universal embedding with automatic optimization. This enables high‐quality optical predictions with a dataset of only 944 materials. GNNOpt predicts all optical properties based on the Kramers‐Krönig relations, including absorption coefficient, complex dielectric function, complex refractive index, and reflectance. The trained model is applied to screen photovoltaic materials based on spectroscopic limited maximum efficiency and search for quantum materials based on quantum weight. First‐principles calculations validate the efficacy of the GNNOpt model, demonstrating excellent agreement in predicting the optical spectra of unseen materials. The discovery of new quantum materials with high predicted quantum weight, such as SiOs, which host exotic quasiparticles with multifold nontrivial topology, demonstrates the potential of GNNOpt in predicting optical properties across a broad range of materials and applications.

Funder

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3