Affiliation:
1. Department of Rehabilitation Medicine The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
2. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
3. Department of Rehabilitation Medicine Bishan Hospital of Chongqing Medical University Bishan Hospital of Chongqing Chongqing 402760 China
4. State Key Laboratory of Ultrasound in Medicine and Engineering Chongqing Medical University Chongqing 400016 China
Abstract
AbstractConventional coupling agents (such as polyvinylpyrrolidone, methylcellulose, and polyurethane) are unable to efficiently transport drugs through the skin's dual barriers (the epidermal cuticle barrier and the basement membrane barrier between the epidermis and dermis) when exposed to ultrasound, hindering deep and noninvasive transdermal drug delivery. In this study, nanobubbles prepared by the double emulsification method and aminated hyaluronic acid are crosslinked with aldehyde‐based hyaluronic acid by dynamic covalent bonding through the Schiff base reaction to produce an innovative ultrasound‐nanobubble coupling agent. By amplifying the cavitation effect of ultrasound, drugs can be efficiently transferred through the double barrier of the skin and delivered to deep layers. In an in vitro model of isolated porcine skin, this agent achieves an effective penetration depth of 728 µm with the parameters of ultrasound set at 2 W, 650 kHz, and 50% duty cycle for 20 min. Consequently, drugs can be efficiently delivered to deeper layers noninvasively. In summary, this ultrasound nanobubble coupling agent efficiently achieves deep‐layer drug delivery by amplifying the ultrasonic cavitation effect and penetrating the double barriers, heralding a new era for noninvasive drug delivery platforms and disease treatment.
Funder
Chongqing Municipal Key Laboratory of Institutions of Higher Education
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献