Stabilization of FAPbI3 with Multifunctional Alkali‐Functionalized Polymer

Author:

Zhao Chenxu12ORCID,Zhang Hong23ORCID,Almalki Masaud2,Xu Jia1,Krishna Anurag2,Eickemeyer Felix T.2,Gao Jing2,Wu Yu Mao4,Zakeeruddin Shaik M.2,Chu Junhao3,Yao Jianxi1,Grätzel Michael2

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources Beijing Key Laboratory of Energy Safety and Clean Utilization North China Electric Power University Beijing 102206 P. R. China

2. Laboratory of Photonics and Interfaces École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland

3. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics, Department of Materials Science Fudan University Shanghai 200433 P. R. China

4. Key Laboratory for Information Sciences of Electromagnetic Waves (MoE) School of Information Science and Technology Fudan University Shanghai 200433 P. R. China

Abstract

AbstractThe defects located at the interfaces and grain boundaries (GBs) of perovskite films are detrimental to the photovoltaic performance and stability of perovskite solar cells. Manipulating the perovskite crystallization process and tailoring the interfaces with molecular passivators are the main effective strategies to mitigate performance loss and instability. Herein, a new strategy is reported to manipulate the crystallization process of FAPbI3‐rich perovskite by incorporating a small amount of alkali‐functionalized polymers into the antisolvent solution. The synergic effects of the alkali cations and poly(acrylic acid) anion effectively passivate the defects on the surface and GBs of perovskite films. As a result, the rubidium (Rb)‐functionalized poly(acrylic acid) significantly improves the power conversion efficiency of FAPbI3 perovskite solar cells to approaching 25% and reduces the risk of lead ion (Pb2+) leakage continuously via the strong interaction between CO bonds and Pb2+. In addition, the unencapsulated device shows enhanced operational stability, retaining 80% of its initial efficiency after 500 h operation at maximum power point under one‐sun illumination.

Funder

National Natural Science Foundation of China

King Abdulaziz City for Science and Technology

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3