Exploiting the Mechanical Bond Effect for Enhanced Molecular Recognition and Sensing

Author:

Wilmore Jamie T.1ORCID,Beer Paul D.1ORCID

Affiliation:

1. Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Rd Oxford OX1 3TA UK

Abstract

AbstractThe ubiquity of charged species in biological and industrial processes has resulted in ever‐increasing interest in their selective recognition, detection, and environmental remediation. Building on the established coordination chemistry principles of the chelate and macrocyclic effects, and host preorganization, supramolecular chemists seek to construct specific 3D binding cavities reminiscent of biotic systems to enhance host‐guest binding affinity and selectivity. Mechanically interlocked molecules (MIMs) present a wholly unique platform for synthetic host design, wherein topologies afforded by the mechanical bond enable the decoration of 3D cavities for non‐covalent interactions with a range of target guest geometries. Notably, MIM host systems exhibit mechanical bond effect augmented affinities and selectivities for a variety of charged guest species, compared to non‐interlocked acyclic and macrocycle host analogs. Furthermore, the modular nature of MIM synthesis facilitates incorporation of optical and electrochemical reporter groups, enabling fabrication of highly sensitive and specific molecular sensors. This review discusses the development of recognition and sensing MIMs, from the first reports in the late 20th century through to the present day, delineating how their topologically preorganized and dynamic host cavities enhance charged guest recognition and sensing, demonstrating the mechanical bond effect as a potent tool in future chemosensing materials.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3