4D Visualization of a Nonthermal Coherent Magnon in a Laser Heated Lattice by an X‐ray Free Electron Laser

Author:

Jang Hoyoung12,Ueda Hiroki34,Kim Hyeong‐Do1,Kim Minseok1,Shin Kwang Woo5,Kim Kee Hoon5,Park Sang‐Youn1,Shin Hee Jun1,Borisov Pavel67,Rosseinsky Matthew J.7,Jang Dogeun1,Choi Hyeongi1,Eom Intae12,Staub Urs3,Chun Sae Hwan12ORCID

Affiliation:

1. Pohang Accelerator Laboratory POSTECH Pohang Gyeongbuk 37673 Republic of Korea

2. Photon Science Center POSTECH Pohang Gyeongbuk 37673 Republic of Korea

3. Swiss Light Source Paul Scherrer Institute Villigen‐PSI 5232 Switzerland

4. SwissFEL Paul Scherrer Institute Villigen‐PSI 5232 Switzerland

5. Center for Novel States of Complex Materials Research Department of Physics and Astronomy Seoul National University Seoul 08826 Republic of Korea

6. Department of Physics Loughborough University Loughborough LE11 3TU UK

7. Department of Chemistry University of Liverpool Liverpool L7 3NY UK

Abstract

AbstractUltrafast optical manipulation of magnetic phenomena is an exciting achievement of mankind, expanding one's horizon of knowledge toward the functional nonequilibrium states. The dynamics acting on an extremely short timescale push the detection limits that reveal fascinating light–matter interactions for nonthermal creation of effective magnetic fields. While some cases are benchmarked by emergent transient behaviors, otherwise identifying the nonthermal effects remains challenging. Here, a femtosecond time‐resolved resonant magnetic X‐ray diffraction experiment is introduced, which uses an X‐ray free‐electron laser (XFEL) to distinguish between the effective field and the photoinduced thermal effect. It is observed that a multiferroic Y‐type hexaferrite exhibits magnetic Bragg peak intensity oscillations manifesting entangled antiferromagnetic (AFM) and ferromagnetic (FM) Fourier components of a coherent AFM magnon. The magnon trajectory constructed in 3D space and time domains is decisive to evince ultrafast field formation preceding the lattice thermalization. A remarkable impact of photoexcitation across the electronic bandgap is directly unraveled, amplifying the photomagnetic coupling that is one of the highest among AFM dielectrics. Leveraging the above‐bandgap photoexcitation, this energy‐efficient optical process further suggests a novel photomagnetic control of ferroelectricity in multiferroics.

Funder

National Research Foundation of Korea

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3