Suppressing Buried Interface Nonradiative Recombination Losses Toward High‐Efficiency Antimony Triselenide Solar Cells

Author:

Chen Guojie1,Luo Yandi12,Abbas Muhammad1,Ishaq Muhammad1,Zheng Zhuanghao1,Chen Shuo1,Su Zhenghua1,Zhang Xianghua2,Fan Ping1,Liang Guangxing1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Advanced Thin Films and Applications Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen Guangdong 518060 China

2. Institut des Sciences Chimiques de Rennes UMR 6226 Université de Rennes Rennes F‐35000 France

Abstract

AbstractAntimony triselenide (Sb2Se3) has possessed excellent optoelectronic properties and has gained interest as a light‐harvesting material for photovoltaic technology over the past several years. However, the severe interfacial and bulk recombination obviously contribute to significant carrier transport loss thus leading to the deterioration of power conversion efficiency (PCE). In this work, buried interface and heterojunction engineering are synergistically employed to regulate the film growth kinetic and optimize the band alignment. Through this approach, the orientation of the precursor films is successfully controlled, promoting the preferred orientational growth of the (hk1) of the Sb2Se3 films. Besides, interfacial trap‐assisted nonradiative recombination loss and heterojunction band alignment are successfully minimized and optimized. As a result, the champion device presents a PCE of 9.24% with short‐circuit density (JSC) and fill factor (FF) of 29.47 mA cm−2 and 63.65%, respectively, representing the highest efficiency in sputtered‐derived Sb2Se3 solar cells. This work provides an insightful prescription for fabricating high‐quality Sb2Se3 thin film and enhancing the performance of Sb2Se3 solar cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3