Affiliation:
1. Department of Chemistry New Cornerstone Science Laboratory Institute of Biomimetic Materials & Chemistry Anhui Engineering Laboratory of Biomimetic Materials Division of Nanomaterials & Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
2. Institute of Innovative Materials Department of Materials Science and Engineering Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
Abstract
AbstractAll‐natural materials derived from cellulose nanofibers (CNFs) are expected to be used to replace engineering plastics and have attracted much attention. However, the lack of crack extension resistance and 3D formability of nanofiber‐based structural materials hinders their practical applications. Here, a multiscale interface engineering strategy is reported to construct high‐performance cellulose‐based materials. The sisal microfibers are surface treated to expose abundant active CNFs with positive charges, thereby enhancing their interfacial combination with the negatively charged CNFs. The robust multiscale dual network enables easy molding of multiscale cellulose‐based structural materials into complex 3D special‐shaped structures, resulting in nearly twofold and fivefold improvements in toughness and impact resistance compared with those of CNFs‐based materials. Moreover, this multiscale interface engineering strategy endows cellulose‐based structural materials with better comprehensive performance than petrochemical‐based plastics and broadens cellulose's potential for lightweight applications as structural materials with lower environmental effects.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献