Modulating the Electronic Structure of Cobalt‐Vanadium Bimetal Catalysts for High‐Stable Anion Exchange Membrane Water Electrolyzer

Author:

Liang Zhijian1,Shen Di1,Wei Yao23,Sun Fanfei23,Xie Ying1,Wang Lei1,Fu Honggang1ORCID

Affiliation:

1. Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China

2. Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China

3. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

Abstract

AbstractModulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high‐efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral‐like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal‐H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen‐containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm–2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm–3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high‐energy consumed OER, the dissolution of vanadium species transforms distorted Co−O octahedral into regular octahedral structures, accompanied by a shortening of the Co−Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3