The Challenge of Water Competition in Physical Adsorption of CO2 by Porous Solids for Carbon Capture Applications – A Short Perspective

Author:

Rajendran Arvind1,Shimizu George K. H.2ORCID,Woo Tom K.3

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta T6G 1H9 Canada

2. Department of Chemistry University of Calgary Department of Chemistry Calgary T2N1N4 Canada

3. Department of Chemistry and Biomolecular Science University of Ottawa Ottawa Ontario K1N6N5 Canada

Abstract

AbstractWith ever‐increasing efforts to design sorbent materials to capture carbon dioxide from flue gas and air, this perspective article is provided based on nearly a decade of collaboration across science, engineering, and industry partners. A key point learned is that a holistic view of the carbon capture problem is critical. While researchers can be inclined to value their own fields and associated metrics, often, key parameters are those that enable synergy between materials and processes. While the role of water in the chemisorption of CO2 is well‐studied, in this perspective, it is hoped to highlight the often‐overlooked but critical role of water in assessing the potential of a physical adsorbent for CO2 capture. This is a challenge that requires interdisciplinarity. As such, this document is written for a general audience rather than experts in any specific discipline.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3