Affiliation:
1. Department of Materials Engineering KU Leuven Kasteelpark Arenberg 44, P. O. box 2450 Leuven B‐3001 Belgium
2. Department of Chemistry KU Leuven Celestijnenlaan 200F, P. O. box 2404 Leuven B‐3001 Belgium
Abstract
AbstractThe advancement of highly integrated stretchable electronics requires the development of scalable sub‐micrometer conductor patterning. Eutectic gallium indium (EGaIn) is an attractive conductor for stretchable electronics, as its liquid metallic character grants it high electrical conductivity upon deformation. However, its high surface tension makes its patterning with sub‐micrometer resolution challenging. In this work, this limitation is overcome by way of the electrodeposition of EGaIn. A non‐aqueous acetonitrile‐based electrolyte that exhibits high electrochemical stability and chemical orthogonality is used. The electrodeposited material leads to low‐resistance lines that remain stable upon (repeated) stretching to a 100% strain. Because electrodeposition benefits from the resolution of mature nanofabrication methods used to pattern the base metal, the proposed “bottom‐up” approach achieves a record‐high density integration of EGaIn regular lines of 300 nm half‐pitch on an elastomer substrate by plating on a gold seed layer prepatterned by nanoimprinting. Moreover, vertical integration is enabled by filling high‐aspect‐ratio vias. This capability is conceptualized by the fabrication of an omnidirectionally stretchable 3D electronic circuit, and demonstrates a soft‐electronic analog of the stablished damascene process used to fabricate microchip interconnects. Overall, this work proposes a simple route to address the challenge of metallization in highly integrated (3D) stretchable electronics.
Funder
Fonds Wetenschappelijk Onderzoek
H2020 European Research Council
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献