Neuron‐Inspired Sticky Artificial Spider Silk for Signal Transmission

Author:

Zhao Weiqiang1,Shao Fei1,Sun Fuqin2,Su Zihao1,Liu Shiyong3,Zhang Ting2,Zhu Meifang4,Liu Zunfeng1ORCID,Zhou Xiang3

Affiliation:

1. State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China

2. i‐Lab Key Laboratory of Multifunctional Nanomaterials and Smart Systems Suzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO) Chinese Academy of Sciences (CAS) 398 Ruoshui Road Suzhou Jiangsu 215123 China

3. Department of Science China Pharmaceutical University Nanjing 211198 China

4. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China

Abstract

AbstractNeurons exhibit excellent signal transmission capacity, which inspire artificial neuron materials for applications in the field of wearable electronics and soft robotics. In addition, the neuron fibers exhibit good mechanical robustness by sticking to the organs, which currently has rarely been studied. Here, a sticky artificial spider silk is developed by employing a proton donor‐acceptor (PrDA) hydrogel fiber for application as artificial neuron fibers. Tuning the molecular electrostatic interactions by modulating the sequences of proton donors and acceptors, enables combination of excellent mechanical properties, stickiness, and ion conductivity. In addition, the PrDA hydrogel exhibits high spinning capacity for a wide range of donor‐acceptor combinations. The PrDA artificial spider silk would shed light on the design of new generation of artificial neuron materials, bio‐electrodes, and artificial synapses.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3