Cluster‐Triggered Self‐Luminescence, Rapid Self‐Healing, and Adaptive Reprogramming Liquid Crystal Elastomers Enabled by Dynamic Imine Bond

Author:

Fan Qingyan1,Tang Yuting1,Sun Haonan1,Guo Dekang1,Ma Jiawei1,Guo Jinbao1ORCID

Affiliation:

1. Key Laboratory of Carbon Fibers and Functional Polymers Ministry of Education and College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

Abstract

AbstractThe integration of advanced functions and diverse practical applications calls for multifunctional liquid crystal elastomers (LCEs); however, the structure‐intrinsic luminescence and excellent mechanical properties of LCEs have not yet been explored. In this study, clusteroluminescence (CL)‐based LCEs (CL‐LCEs) are successfully fabricated without depending on large conjugated structures, thereby avoiding redundant organic synthesis and aggregation‐caused quenching. The experimental and theoretical results reveal that secondary amine (–NH–) and imine (–C = N–) groups play vital roles in determining the presence of fluorescence in CL‐LCEs. Based on the above observation, the strategy universalization and a molecular library for constructing CL‐LCEs are further demonstrated. Meanwhile, the dynamic bond of imine bonds endows the CL‐LCE system with rapid self‐healing under mild conditions (70 °C in 10 min), excellent stretchability, and adaptive programmable characteristics. Furthermore, the self‐luminescent performance enables visual detection of the self‐healing process. Finally, CL‐based information storage and anticounterfeiting are successfully realized and their applications in fiber actuators and fluorescent textiles are demonstrated. The distinctive luminescence and dynamic chemistry presented in this work has significant implications in elucidating the mechanism of CL and providing new strategies for the rational design of novel multifunctional LCE materials.

Funder

National Natural Science Foundation of China

Beijing University of Chemical Technology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3