Organic Synthetic Photonic Systems with Reconfigurable Parity–Time Symmetry Breaking for Tunable Single‐Mode Microlasers

Author:

Zhang Chunhuan12ORCID,Shu Fang‐Jie3,Zou Chang‐Ling4,Dong Haiyun1ORCID,Yao Jiannian1,Zhao Yong Sheng1ORCID

Affiliation:

1. Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. Advanced Research Institute of Multidisciplinary Science and School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China

3. Henan Province Engineering Research Center of Microcavity and Photoelectric Intelligent Sensing School of Electronics and Electrical Engineering Shangqiu Normal University Shangqiu 476000 P. R. China

4. CAS Key Laboratory of Quantum Information University of Science and Technology of China Hefei 230026 P. R. China

Abstract

AbstractSynthetic photonic materials exploiting the quantum concept of parity–time (PT) symmetry lead to an emerging photonic paradigm—non‐Hermitian photonics, which is revolutionizing the photonic sciences. The non‐Hermitian photonics dealing with the interplay between gain and loss in PT synthetic photonic material systems offers a versatile platform for advancing microlaser technology. However, current PT‐symmetric microcavity laser systems only manipulate imaginary parts of the refractive indices, suffering from limited laser spectral bandwidth. Here, an organic composite material system is proposed to synthesize reconfigurable PT‐symmetric microcavities with controllable complex refractive indices for realizing tunable single‐mode laser outputs. A grayscale electron‐beam direct‐writing technique is elaborately designed to process laser dye‐doped polymer films in one single step into microdisk cavities with periodic gain and loss distribution, which enables thresholdless PT‐symmetry breaking and single‐mode laser operation. Furthermore, organic photoisomerizable compounds are introduced to reconfigure the PT‐symmetric systems in real‐time by tailoring the real refractive index of the polymer microresonators, allowing for a dynamically and continuously tunable single‐mode laser output. This work fundamentally enhances the PT‐symmetric photonic systems for innovative design of synthetic photonic materials and architectures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3