Mechanically Robust Self‐Organized Crack‐Free Nanocellular Graphene with Outstanding Electrochemical Properties in Sodium Ion Battery

Author:

Park Wong‐Young1,Han Jiuhui23,Moon Jongun45,Joo Soo‐Hyun16,Wada Takeshi1,Ichikawa Yuji7,Ogawa Kazuhiro7,Kim Hyoung Seop489,Chen Mingwei10,Kato Hidemi1ORCID

Affiliation:

1. Institute for Materials Research Tohoku University Katahira 2‐1‐1 Sendai 980‐8577 Japan

2. Tianjin Key Laboratory of Advanced Functional Porous Materials Institute for New Energy Materials and Low‐Carbon Technologies Tianjin University of Technology 391 Binshui West Road Tianjin 300384 China

3. Frontier Research Institute for Interdisciplinary Sciences Tohoku University 6‐3 Aoba Sendai 980‐8578 Japan

4. Department of Materials Science and Engineering Pohang University of Science and Technology 77 Cheongam‐Ro Pohang 37673 Republic of Korea

5. Division of Advanced Materials Engineering Center for Advanced Powder Materials and Parts Kongju National University 1223‐24 Cheonan‐daero Cheonan 31080 Republic of Korea

6. Department of Materials Science and Engineering Dankook University 119 Dandae‐ro Cheonan 31116 Republic of Korea

7. Fracture and Reliability Research Institute (FRI) Tohoku University 6‐6‐11 Aoba Sendai 980‐8579 Japan

8. Advanced Institute for Materials Research (WPI‐AIMR) Tohoku University Katahira 2‐1‐1 Sendai 980‐8577 Japan

9. Institute for Convergence Research and Education in Advanced Technology Yonsei University Yonsei‐ro 50 Seoul 03722 Republic of Korea

10. Department of Materials Science and Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218‐2681 USA

Abstract

AbstractCrack‐free nanocellular graphenes are attractive materials with extraordinary mechanical and electrochemical properties, but their homogeneous synthesis on the centimeter scale is challenging. Here, a strong nanocellular graphene film achieved by the self‐organization of carbon atoms using liquid metal dealloying and employing a defect‐free amorphous precursor is reported. This study demonstrates that a Bi melt strongly catalyzes the self‐structuring of graphene layers at low processing temperatures. The robust nanoarchitectured graphene displays a high‐genus seamless framework and exhibits remarkable tensile strength (34.8 MPa) and high electrical conductivity (1.6 × 104 S m−1). This unique material has excellent potential for flexible and high‐rate sodium‐ion battery applications.

Funder

National Research Foundation of Korea

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3