In situ Electropolymerized 3D Microporous Cobalt‐Porphyrin Nanofilm for Highly Effective Molecular Electrocatalytic Reduction of Carbon Dioxide

Author:

Wang Chao1,Chen Yuzhuo2,Su Daijian3,Man Wai‐Lun2,Lau Kai‐Chung4,Han Lianhuan1,Zhao Liubin3,Zhan Dongping15,Zhu Xunjin2ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China

2. Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis Hong Kong Baptist University Kowloon Tong Hong Kong China

3. Department of Chemistry School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China

4. Department of Chemistry City University of Hong Kong Kowloon Hong Kong China

5. Department of Chemistry College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China

Abstract

AbstractElectrocatalytic CO2 reduction reaction (CO2RR) based on molecular catalysts, for example, cobalt porphyrin, is promising to enhance the carbon cycle and mitigate current climate crisis. However, the electrocatalytic performance and accurate evaluations remain problems because of either the low loading amount or the low utilization rate of the electroactive CoN4 sites. Herein a monomer is synthesized, cobalt(II)‐5,10,15,20‐tetrakis(3,5‐di(thiophen‐2‐yl)phenyl)porphyrin (CoP), electropolymerized onto carbon nanotubes (CNTs) networks, affording a molecular electrocatalyst of 3D microporous nanofilm (EP‐CoP, 2–3 nm thickness) with highly dispersed CoN4 sites. The new electrocatalyst shortens the electron transfer pathway, accelerates the redox kinetics of CoN4 sites, and improves the durability of the electrocatalytic CO2RR. From the intrinsic redox behavior of CoN4 sites, the effective utilization rate is obtained as 13.1%, much higher than that of the monomer assembled electrode (5.8%), and the durability is also promoted dramatically (>40 h) in H‐type cells. In commercial flow cells, EP‐CoP can achieve a faradic efficiency for CO (FECO) over 92% at an overpotential of 160 mV. At a higher overpotential of 620 mV, the working current density can reach 310 mA cm−2 with a high FECO of 98.6%, representing the best performance for electrodeposited molecular porphyrin electrocatalysts.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3