Heteroatom‐Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction

Author:

Yin Leilei1,Zhang Shuai1,Sun Mingzi2,Wang Siyuan1,Huang Bolong23ORCID,Du Yaping1

Affiliation:

1. Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University Tianjin 300350 China

2. Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR 999077 China

3. Research Centre for Carbon‐Strategic Catalysis The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR 999077 China

Abstract

AbstractFor current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s−1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm−2. As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Natural Science Foundation of Guangdong Province

National Postdoctoral Program for Innovative Talents

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3