Supercapacitively Liquid‐Solid Dual‐State Optoelectronics

Author:

Guo Qianying123,Ji Daizong1234,Wang Qiankun123,Peng Lan123,Zhang Cong123,Wu Yungen123,Kong Derong123,Luo Shi123,Liu Wentao123,Chen Gang5,Wei Dapeng6,Liu Yunqi3,Wei Dacheng123ORCID

Affiliation:

1. State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China

2. Department of Macromolecular Science Fudan University Shanghai 200433 China

3. Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China

4. The Institute for Biomedical Engineering & Nano Science School of Medicine Tongji University Shanghai 200120 China

5. State Key Laboratory for Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China

6. Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China

Abstract

AbstractPhoto‐transduction of solid‐state optoelectronics occurs in semiconductors or their interfaces. Considering the confined active area and interfacial capacitance of solid‐state materials, solid‐state optoelectronics faces inherent limitations in photo‐transduction, especially for bionic vision, and the performance is lower than that of living systems. For example, a photoreceptor generates pA‐level photocurrent when absorbing a single photon. Here, a liquid‐solid dual‐state phototransistor is demonstrated, in which photo‐transduction and modulation take place at the microporous interface between semiconductors and water, mimicking principles of the photoreceptor. When operating in the water, an orderly stacked photo‐harvesting covalent organic framework layer generates supercapacitively photogating modulation of the channel conductivity via a dual‐state interface, achieving responsivity of 4.6 × 1010 A W−1 and detectivity of 1.62 × 1016 Jones at room temperature, several orders of magnitude higher than other photodetectors. Such bio‐inspired dual‐state optoelectronics enables high‐contrast scotopic neuromorphic imaging with responsivity greater than photoreceptors, holding promise for constructing optoelectronic systems with performance beyond conventional solid‐state optoelectronics.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Fudan University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3