Polymer Mechanochemistry in Microbubbles

Author:

Xuan Mingjun12ORCID,Fan Jilin12ORCID,Khiêm Vu Ngoc3ORCID,Zou Miancheng12ORCID,Brenske Kai‐Oliver12,Mourran Ahmed1ORCID,Vinokur Rostislav1,Zheng Lifei14ORCID,Itskov Mikhail3ORCID,Göstl Robert12ORCID,Herrmann Andreas12ORCID

Affiliation:

1. DWI – Leibniz‐Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany

2. Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany

3. Department of Continuum Mechanics RWTH Aachen University Eilfschornsteinstr. 18 52062 Aachen Germany

4. Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325001 China

Abstract

AbstractPolymer mechanochemistry is a promising technology to convert mechanical energy into chemical functionality by breaking covalent and supramolecular bonds site‐selectively. Yet, the mechanochemical reaction rates of covalent bonds in typically used ultrasonication setups lead to reasonable conversions only after comparably long sonication times. This can be accelerated by either increasing the reactivity of the mechanoresponsive moiety or by modifying the encompassing polymer topology. Here, a microbubble system with a tailored polymer shell consisting of an N2 gas core and a mechanoresponsive disulfide‐containing polymer network is presented. It is found that the mechanochemical activation of the disulfides is greatly accelerated using these microbubbles compared to commensurate solid core particles or capsules filled with liquid. Aided by computational simulations, it is found that low shell thickness, low shell stiffness and crosslink density, and a size‐dependent eigenfrequency close to the used ultrasound frequency maximize the mechanochemical yield over the course of the sonication process.

Funder

Deutsche Forschungsgemeinschaft

Alexander von Humboldt-Stiftung

China Scholarship Council

European Commission

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3