A Photoelectrochemical Retinomorphic Synapse

Author:

Hu Jin123,Jing Ming‐Jian1,Huang Yu‐Ting1,Kou Bo‐Han1,Li Zheng1,Xu Yi‐Tong1,Yu Si‐Yuan1,Zeng Xierong2,Jiang Jie4,Lin Peng2,Zhao Wei‐Wei1ORCID

Affiliation:

1. State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China

2. Guangdong Provincial Key Laboratory of New Energy Materials Service Safety Shenzhen Key Laboratory of Special Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China

3. State Key Laboratory of Solidification Processing Carbon/Carbon Composites Research Center Northwestern Polytechnical University Xi'an 710072 P. R. China

4. Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University 932 South Lushan Road Changsha Hunan 410083 P. R. China

Abstract

AbstractReproducing human visual functions with artificial devices is a long‐standing goal of the neuromorphic domain. However, emulating the chemical language communication of the visual system in fluids remains a grand challenge. Here, a “multi‐color” hydrogel‐based photoelectrochemical retinomorphic synapse is reported with unique chemical‐ionic‐electrical signaling in an aqueous electrolyte that enables, e.g., color perception and biomolecule‐mediated synaptic plasticity. Based on the specific enzyme‐catalyzed chromogenic reactions, three multifunctional colored hydrogels are developed, which can not only synergize with the Bi2S3 photogate to recognize the primary colors but also synergize with a given polymeric channel to promote the long‐term memory of the system. A synaptic array is further constructed for sensing color images and biomolecule‐coded information communication. Taking advantage of the versatile biochemistry, the biochemical‐driven reversible photoelectric response of the cone cell is further mimicked. This work introduces rich chemical designs into retinomorphic devices, providing a perspective for replicating the human visual system in fluids.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3