Boosting Upconversion Efficiency in Optically Inert Shelled Structures with Electroactive Membrane through Electron Donation

Author:

Wang Liu‐Chun12ORCID,Chen Hong‐Kai3,Wang Wen‐Jyun4,Hsu Fang‐Yi4,Huang Hong‐Zhang3,Kuo Rui‐Tong3,Li Wei‐Peng2456,Tian Hong‐Kang378,Yeh Chen‐Sheng12ORCID

Affiliation:

1. Department of Chemistry National Cheng Kung University Tainan 701 Taiwan

2. Center of Applied Nanomedicine National Cheng Kung University Tainan 701 Taiwan

3. Department of Chemical Engineering National Cheng Kung University Tainan 701 Taiwan

4. Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan

5. Drug Development and Value Creation Research Center Kaohsiung Medical University Kaohsiung 807 Taiwan

6. Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung 807 Taiwan

7. Hierarchical Green‐Energy Materials (Hi‐GEM) Research Center National Cheng Kung University Tainan 701 Taiwan

8. Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University Tainan 701 Taiwan

Abstract

AbstractThis study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide‐based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR‐1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c‐type cytochromes, are extracted from bacteria and integrated into membrane‐integrated liposomes (MILs), encapsulating core–shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near‐infrared excitation (980 or 1550 nm), bypassing ligand‐sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer‐induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3