Affiliation:
1. Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry Renmin University of China Beijing 100872 China
Abstract
AbstractNatural earthworm with the ability to loosen soils that favors sustainable agriculture has inspired worldwide interest in the design of intelligent actuators. Given the inability to carry heavy loads and uncontrolled deformation, the vast majority of actuators can only perform simple tasks by bending, contraction, or elongation. Herein, a degradable actuator with the ability to deform in desired ways is presented, which successfully mimics the burrowing activities of earthworms to loosen soils with increased soil porosity by digging, grabbing, and lifting the soil when it receives rains. Such a scarifying actuator is made of degradable cellulose acetate and uncrosslinked polyacrylamide via the swelling‐photopolymerizing method. The water absorption of polyacrylamide in moisture conditions causes rapid and remarkable bending. Such mechanical bending can be controlled in specific areas of the cellulose acetate film if polyacrylamide is polymerized in a patterned way, so as to generate complicated deformations of the whole cellulose acetate. Patterning polyacrylamide within cellulose acetate is achieved based on reversible surface protection by means of pen writing, rather than the traditional masking techniques. The water‐induced deformation of programmable cellulose‐based actuators is well preserved in soil, which is appropriate for promoting rain diffusion as well as root breath.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献