Electrochemical and Biocatalytic Signal‐Controlled Payload Release from a Metal–Organic Framework

Author:

Sterin Ilya1,Hadynski John1,Tverdokhlebova Anna1,Masi Madeline1,Katz Evgeny1ORCID,Wriedt Mario12,Smutok Oleh1

Affiliation:

1. Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA

2. Department of Chemistry and Biochemistry University of Texas at Dallas Richardson TX 75080 USA

Abstract

AbstractA metal–organic framework (MOF), ZIF‐8, which is stable at neutral and slightly basic pH values in aqueous solutions and destabilized/dissolved under acidic conditions, is loaded with a pH‐insensitive fluorescent dye, rhodamine‐B isothiocyanate, as a model payload species. Then, the MOF species are immobilized at an electrode surface. The local (interfacial) pH value is rapidly decreased by means of an electrochemically stimulated ascorbate oxidation at +0.4 V (Ag/AgCl/KCl). Oxygen reduction upon switching the applied potential to −0.8 V allows to return the local pH to the neutral/basic pH, then stopping rapidly the release process. The developed method allows electrochemical control over stimulated or inhibited payload release processes from the MOF. The pH variation proceeds in a thin film of the solution near the electrode surface. The switchable release process is realized in a buffer solution and undiluted human serum. As the second option, the pH decrease stimulating the release process is achieved upon an enzymatic reaction using esterase and ester substrate. This approach potentially allows the release activation controlled by numerous enzymes assembled in complex biocatalytic cascades. It is expected that related electrochemical or biocatalytic systems can represent novel signal‐responding materials with switchable features for delivering (bio)molecules within biomedical applications.

Funder

National Science Foundation

Human Frontier Science Program

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3