Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion

Author:

Luo Jiawei1,Zhang Jingchao1,Guo Zhaoxin1,Liu Zhedong1,Wang Chunying1,Jiang Haoran1,Zhang Jinfeng1,Fan Longlong2,Zhu He3,Xu Yunhua1,Liu Rui4,Ding Jia1,Chen Yanan1ORCID,Hu Wenbin1

Affiliation:

1. School of Materials Science and Engineering Tianjin University Tianjin 300072 China

2. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

3. Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China

4. School of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China

Abstract

AbstractDespite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3