Efficient and Robust Molecular Solar Thermal Fabric for Personal Thermal Management

Author:

Fei Liang1ORCID,Zhang Zhao‐Yang2ORCID,Tan Yongsong1,Ye Ting1,Dong Dongfang2,Yin Yunjie1,Li Tao2ORCID,Wang Chaoxia1ORCID

Affiliation:

1. College of Textile Science and Engineering Jiangnan University 1800 Lihu Road 214122 Wuxi P. R. China

2. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Key Laboratory of Thin Film and Microfabrication (Ministry of Education) Shanghai Jiao Tong University Shanghai 200240 P. R. China

Abstract

AbstractMolecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy‐storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole‐containing microcapsules with a deep‐UV‐filter shell is reported. The MOST fabric, which can co‐harvest solar and thermal energy, achieves efficient photocharging and photo‐discharging (>90% photoconversion), a high energy density of 2.5 kJ m−2, and long‐term storage sustainability at month scale. Moreover, it can undergo multiple cycles of washing, rubbing, and recharging without significant loss of energy‐storage capacity. This MOST microcapsule strategy is easily used for the scalable production of a MOST fabric for solar thermal moxibustion. This achievement offers a promising route for the application of wearable MOST materials with high energy‐storage performance and robustness in PTM.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

China Scholarship Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3