Layered High‐Entropy Metallic Glasses for Photothermal CO2 Methanation

Author:

Yu Xiwen1,Ding Xue2,Yao Yingfang1234ORCID,Gao Wanguo3,Wang Cheng1,Wu Chengyang1,Wu Congping134,Wang Bing134ORCID,Wang Lu2ORCID,Zou Zhigang12345ORCID

Affiliation:

1. Eco‐materials and Renewable Energy Research Center (ERERC) Collaborative innovation center of advanced microstructures College of Engineering and Applied Sciences Nanjing University Hankou Road, Gulou Nanjing Jiangsu 210093 China

2. School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Central Ave Shenzhen 518172 China

3. National Laboratory of Solid State Microstructures Nanjing University School of Physics Nanjing University Hankou Road, Gulou Nanjing Jiangsu 210093 China

4. Jiangsu Key Laboratory for Nano Technology Nanjing University Hankou Road, Gulou Nanjing Jiangsu 210093 China

5. Macau Institute of Systems Engineering Macau University of Science and Technology Avenida Wai Long Taipa Macau 999078 China

Abstract

AbstractHigh entropy alloys and metallic glasses, as two typical metastable nanomaterials, have attracted tremendous interest in energy conversion catalysis due to their high reactivity in nonequilibrium states. Herein, a novel nanomaterial, layered high entropy metallic glass (HEMG), in a higher energy state than low‐entropy alloys and its crystalline counterpart due to both the disordered elemental and structural arrangements, is synthesized. Specifically, the MnNiZrRuCe HEMG exhibits highly enhanced photothermal catalytic activity and long‐term stability. An unprecedented CO2 methanation rate of 489 mmol g−1 h−1 at 330 °C is achieved, which is, to the authors’ knowledge, the highest photothermal CO2 methanation rate in flow reactors. The remarkable activity originates from the abundant free volume and high internal energy state of HEMG, which lead to the extraordinary heterolytic H2 dissociation capacity. The high‐entropy effect also ensures the excellent stability of HEMG for up to 450 h. This work not only provides a new perspective on the catalytic mechanism of HEMG, but also sheds light on the great catalytic potential in future carbon‐negative industry.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photon and phonon powered photothermal catalysis;Energy & Environmental Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3