Stacking Faults Inducing Oxygen Anion Activities in Li2MnO3

Author:

Wang Boya12,Zhuo Zengqing3,Li Haifeng12,Liu Shiqi12,Zhao Shu12,Zhang Xu12,Liu Jue4,Xiao Dongdong5,Yang Wanli3,Yu Haijun12ORCID

Affiliation:

1. Institute of Advanced Battery Materials and Devices Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 P. R. China

2. Key Laboratory of Advanced Functional Materials Ministry of Education Beijing University of Technology Beijing 100124 P. R. China

3. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37830 USA

5. Institute of Physics Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics Beijing 100190 P. R. China

Abstract

AbstractControllable anionic redox for a transformational increase in the energy density is the pursuit of next generation Li‐ion battery cathode materials. Its activation mechanism is coupled with the local coordination environment around O, which posts experimental challenges for control. Here, the tuning capability of anionic redox is shown by varying O local environment via experimentally controlling the density of stacking faults in Li2MnO3, the parent compound of Li‐rich oxides. By combining computational analysis and spectroscopic study, it is quantitatively revealed that more stacking faults can trigger smaller LiOLi bond angles and larger LiO bond distance in local Li‐rich environments and subsequently activate oxygen redox reactivity, which in turn enhances the reactivity of Mn upon the following reduction process. This study highlights the critical role of local structure environment in tuning the anionic reactivity, which provides guidance in designing high‐capacity layered cathodes by appropriately adjusting stacking faults.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3