Liquid‐Like Li‐Ion Conduction in Oxides Enabling Anomalously Stable Charge Transport across the Li/Electrolyte Interface in All‐Solid‐State Batteries

Author:

Wu Jian‐Fang1,Zou Zheyi2,Pu Bowei3,Ladenstein Lukas4,Lin Shen3,Xie Wenjing2,Li Shen2,He Bing3,Fan Yameng5,Pang Wei Kong5,Wilkening H. Martin R.4,Guo Xin6,Xu Chaohe7,Zhang Tao8,Shi Siqi3,Liu Jilei1ORCID

Affiliation:

1. College of Materials Science and Engineering Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology Hunan University Changsha 410082 P. R. China

2. School of Materials Science and Engineering Xiangtan University Xiangtan 411105 P. R. China

3. School of Materials Science and Engineering Materials Genome Institute Shanghai University Shanghai 200444 P. R. China

4. Institute of Chemistry and Technology of Materials Christian Doppler Laboratory for Lithium Batteries Graz University of Technology (NAWI Graz) Graz 8010 Austria

5. Institute for Superconducting & Electronic Materials University of Wollongong Wollongong New South Wales 2522 Australia

6. State Key Laboratory of Material Processing and Die & Mould Technology Laboratory of Solid State Ionics School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China

7. College of Aerospace Engineering Chongqing University Chongqing 400044 P. R. China

8. State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China

Abstract

AbstractThe softness of sulfur sublattice and rotational PS4 tetrahedra in thiophosphates result in liquid‐like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid‐like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid‐like Li‐ion conduction is discovered in LiTa2PO8 and its derivatives, wherein Li‐ion migration channels are connected by four‐ or five‐fold oxygen‐coordinated interstitial sites. This conduction features a low activation energy (0.2 eV) and short mean residence time (<1 ps) of Li ions on the interstitial sites, originating from the Li–O polyhedral distortion and Li‐ion correlation, which are controlled by doping strategies. The liquid‐like conduction enables a high ionic conductivity (1.2 mS cm−1 at 30 °C), and a 700 h anomalously stable cycling under 0.2 mA cm−2 for Li/LiTa2PO8/Li cells without interfacial modifications. These findings provide principles for the future discovery and design of improved solid electrolytes that do not require modifications to the Li/solid electrolyte interface to achieve stable ionic transport.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

State Key Laboratory of Materials Processing and Die and Mould Technology

Huazhong University of Science and Technology

Australian Nuclear Science and Technology Organisation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3